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Linear Matching & Its Generalization

GENERATING MATCHED DISTRIBUTIONS for the nonlinear integrable
optics is fundamentally different from a matched beam in linear
lattices. This topic has been discussed in several locations®. Because
it is such an important aspect of simulating the integrable optics, it
deserves its own technical note. Much of this is based on the work in
the 2015 IPAC proceeding.

Beam matching in single-particle linear lattices is frequently un-
derstood as producing beams with the proper RMS shapes. This is
correct for linear lattices because the Hamiltonian for such a system
is given by
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in the normalized codrdinates. Because H is an invariant of the
single-turn map, and is also a quadratic form in the p’s and g4’s, its
distribution can be specified entirely in terms of RMS quantities. On
a related note, the Courant-Snyder invariant | = 2H. Again, be-
cause | is a quadratic form in the codrdinates and momenta, the RMS
quantities of an ensemble are conserved.

We can thus understand the vertical and horizontal emittance, €,
and €, as being related to the average of single-particle Courant-
Snyder invariants ], and ]y, viz. €; = (J;). Thus, a gaussian distribu-
tion would be given by
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These are in the normalized coordinates, given by
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for the Twiss a’s and f’s. The action-angle variables are then defined
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as
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and thus the Hamiltonian becomes H = }_; v;]J; for the single particle
tunes v;.

The reason we can define independent vertical and horizontal
emittances is that ], and J, are independent variables, and that (in
the uncoupled case) the two transverse degrees of freedom factor into
two one-dimensional Hamiltonians. We can then define the vertical
and horizontal emittances in terms of the individual action variables,
which are conserved quantities in the linear limit.

This is what beam matching is: making the particle phase space
distribution a pure function of some set of invariants of the motion.
Because these invariants are defined in terms of the lattice Twiss
parameters, they are intimately related to the process. The “beam
Twiss parameters” defined in terms of RMS quantities make sense
for linear lattices because the invariants are quadratic forms of the
canonical coordinates and momenta, and so the quantity a% + Ug will
be conserved and directly related to the Twiss parameters.

FOR THE NONLINEAR INTEGRABLE OPTICS?, NONE OF THIS IS TRUE
ANYMORE. The Hamiltonian strongly couples the transverse degrees
of freedom, and so attempting to inject a beam matched to the linear
lattice in the usual way will quickly evolve3 into a distribution very
different from a typical linear matched. distribution. This assumes
the distribution places all the particles inside the hyperbolic fixed
points of the elliptic potential. Particles starting outside those points
will sweep to infinity /be lost to the beam pipe.

This is a problem for understanding tracking results — without a
properly matched distribution, it is impossible to separate the mis-
match dynamics from any actual loss of stability due to external per-
turbations. However, if we understand beam matching as creating a
distribution that is a pure function of the invariants of the motion, we
can quickly generalize our notion of matching and produce matched
beams.

Danilov and Nagaitsev provided a transverse Hamiltonian with
two invariants of the motion. In the work cited above, we used the
Hamiltonian
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as our choice invariant. We could also have used I; and I, to define
the distribution, but the Hamiltonian has a particular advantage. For
the generalization of the K.-V. distribution#, with f(H) = 6(H —€),
the beam edge is defined by
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2V. Danilov and S. Nagaitsev. Non-
linear accelerator lattices with one
and two analytic invariants. Phys.
Rev. ST Acc. Beams, 13(084002), 2010

3 Strictly speaking, filament, due to the
large tune spread in these lattices. The
beam envelope does not “breath” like
with linear mismatch, again due to the
large tune spread.

+1. M. Kapchinskij and V. V.
Vladimirskij. Limitations of proton
beam current in a strong focusing linear
accelerator associated with the beam
space charge. In Proc. of Int’l. Conf. on
High Energy Acc., pages 274—288. CERN,
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In this context, € is the generalized emittance of the beam. It has

the same properties of the emittance for traditional strong focusing
lattices: it is related to the beam envelope size, has the same units of
action (m-rad ), and is an invariant turn-by-turn for an ideal lattice.
To generate a matched distribution, we compute macroparticle initial
conditions that are a pure function of the Hamiltonian.

An Algorithm for Generating a Matching Distribution

THE STARTING POINTS FOR THE MATCHED DISTRIBUTION IS THE
K.-V. DISTRIBUTION, which is a delta function in the action:

f(p,4) = 6(H(p,q) —€). ?)

The simplest way to do this is two-fold. First, develop a bounding
box on the £- plane and randomly and uniformly select particle
coordinates in that area. If
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then the particle is “allowed” and kept. Otherwise the point is dis-
carded. The momentum can be decomposed into polar codrdinates,
so that

pr = Pcosf (9a)

py = Psino (9b)

P = \/2 (e — B(ﬁ +9?) + tV(ae,yA)D (10)

and 0 is selected uniformly, we can compute the py-p, distribution

accordingly from the (now determined) P and the (randomly gener-
ated) 6. This will generate a K.-V.-like distribution, which is unphysi-
cal but a good start.

To compute a more general distribution, note that any distribution
can be written

F(H) = /de’ F()6(H — ). (11)

By approximating the integral as a Riemann sum, we can compute
any arbitrary distribution as the sum of K.-V. distributions. Thus, one
picks a Ae that is small compared to the emittance parameter for the
beam (i.e. for an exponential f e~/ then Ae < €p) and rewrites
the Riemann sum as

f(H) =) AeNpot fr.—v.((n +1/2)A¢) (12)
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for a “second order” in Ae approximation of the distribution, where
Nyt is the total number of (macro-) particles and fx v is a delta
function distribution normalized to unity. One may want to apply a
correcting factor for getting a proper fixed number of macroparticles
to account for the error in the method.

Thus, under this method we can generate any distribution by gen-
erating Nyt f ((n + 1/2) Ae) macroparticles for each K.-V. distribution
with emittance € = (n + 1/2)Ae using the above algorithm. This will
allow us to generate more physical distributions, such as gaussians or
waterbags.

Additional Tools

BECAUSE H AND I ARE INVARIANTS OF THE IDEAL MOTION, their
behavior can be used as a diagnostic of the single-particle dynamics
which is more revealing than the RMS beam sizes in phase space
may be. During the Phase I SBIR that RadiaSoft worked on for

this project, such tools were developed. A Python class which com-
putes the invariants and the single-particle kick is available through
GitHub (https://gist.github.com/afda4f4eb3d09d46a4fb). Other
tools which build on these three functions are available upon request
(swebb_at_radiasoft.net).
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